Autotuning Deep Learning Models

Date:

Monday, May 24, 2021

Time:

9:50 am

Summary:

The quality of any machine learning or deep learning model depends on the values that define the model structure and corresponding hyperparameters. Many practitioners may find themselves investing countless hours manually searching for the right model and related hyperparameter values. Some use highly inefficient grid search methods. Others will use simple random sampling, which actually works fairly well. But alone, this method only offers a globalized search, and other sampling methods may be better suited to the job. 

Why not use machine learning to automate the search for the best model? 

This presentation details an advanced approach that uses both global and local search strategies that can be evaluated in parallel to ensure a quick and efficient exploration of the decision space. In the case of this presentation, a genetic algorithm (GA) will be examined for the global search because the selection and crossover aspects of a GA distinguish it from a purely random search. A generating set search (GSS) will be used to greedily search the local decision space. 

Ready to attend?

Register now! Join your peers.

Register nowView Agenda
Newsletter Knowledge is everything! Sign up for our newsletter to receive:
  • 10% off your first ticket!
  • insights, interviews, tips, news, and much more about Predictive Analytics World for Climate
  • price break reminders